ALPOLIC[®]/fr CCM

ALPOLIC[®]/fr CCM is a copper composite material composed of a copper sheet on the topside, a non-combustible mineral-filled core and a copper sheet on the backside. Like solid copper, ALPOLIC[®]/fr CCM is perfect for architectural wall cladding applications and accent trim on buildings

Features

The natural copper surface's ever-changing finish constantly evolves, adding richness and depth to any building's facade. ALPOLIC[®]/fr CCM offers the rigidity of heavy gauge sheet metal in a lightweight copper-faced composite material. CCM also features such attributes as superior flatness, vibration dampening, durability and ease of maintenance

DIMENSION (STANDARD)

Thickness (tolerance ±0.2mm)	Standard Width (tolerance; ±2.0mm)	(Bow tolerance)
4mm	965mm	$\pm 0.5\%$ of the length and/or width
Skin thickness	Length (tolerance; ±4.0mm)	(Squareness tolerance)

CHARACTERISTICS (FOR STANDARD DIMENSION)

		Method	Unit	ALPOLIC / fr SCM
Physical properties	Thickness	-	-	4mmt
	Specific gravity	—	—	3.13
	Weight	—	kg/m²	12.5
	Thermal expansion	ASTM D696	×10 ⁻⁶ /°C	17
	Thermal conductivity	Calculated value	W/m-K	0.42
	Deflection temperature	ISO 75-2	°C	140